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Abstract

The features inherent in the visual motion field
of a mobile robot indicate important clues about its
navigation and environment. Combining these visual
clues with additional inertial sensor information al-
lows reliable detection of navigation direction for a
mobile robot and the independent motion which may
be present in the scene. The motion field, which is the
2D projection of the 3D scene variations induced by
the camera-robot system, is estimated through optical
flow calculations. The singular points of the global op-
tical flow field of omnidirectional image sequences in-
dicate the translation direction of the robot as well as
the deviation from its planned path. It is also possible
to detect motion patterns of near obstacles or indepen-
dently moving objects of the scene. In this paper, after
reviewing the image velocity measurement techniques
shortly, we introduce the analysis of the intrinsic fea-
tures of the omnidirectional motion fields for motion
detection, giving some preliminary examples of this
analysis.

1 Introduction

Robot navigation requires relevant motion sensing
mechanisms, specially in the case of a dynamical inter-
action with the environment. Tasks like object avoid-
ance or path finding rely on the estimation of the ego
motion and the motion of the environment. Expanded
field of view, provided by omnidirectional vision sen-
sors, enables visual motion detection mechanisms sim-
ilar to some biological species like insects. The role of
wide angle view and optical flow in insect navigation
has been researched in the past [6]. The quintessence
of this research is that bees and other insects rely on
the basic properties of an estimated visual motion field
for navigation. Some robotic applications have fol-
lowed the insights gained on this topic [4, 9]. A simi-
lar motivation has given many researchers an impulse
to look for methods to gain preliminary navigational

information using catadioptric sensors. These sensors
are constructed using a curved mirror combined with
a vision sensor. Different types of curves have been
applied for the mirror design, e.g., parabolic, hyper-
bolic. Special curves preserving spatial features of the
projection like range and angle have been introduced,
too. (For a review on panoramic imaging techniques
and mirror design see [2]) The motion field, which
is captured using a wide angle panoramic sensor, in-
troduces significant structural features, like vanishing
and emerging points of velocity vectors, that indicate
the ego motion direction. Also, dense flow fields con-
tain patterns of different motion regions, which may
indicate independently moving obstacles. Our aim is
to combine this structural information with standard
inertial information as provided by a gyroscope and
examine their usefulness in indoor navigation of a mo-
bile camera-robot system. This paper is organized as
follows: section 2 discusses the inherent features of
omnidirectional motion fields achieved by the optical
flow estimation. Section 3 shortly reviews the optical
flow estimation techniques and introduces methods for
ego- and independent motion detection using the om-
nidirectional optical flow fields and gyroscope. The
last section (4) describes the preliminary experiments.

2 Inherent features of omnidirectional
optical flow fields

In the spherical views of a 3D scene, the Focus
of Expansion (FOE), the points on the motion field
where the flow vectors seem to be emerging, and the
Focus of Contraction (FOC), the points where the flow
vectors are vanishing, are always in the field of view
and span an angle of 180◦, if the camera motion is
purely translatory. By pure rotational motion neither
FOE nor FOC are in the field of view. In real robotic
applications, though, there is mostly a translatory
component in the motion field. A rotational compo-
nent in a translational motion field causes the relative
positions of FOE and FOC to vary (see Fig.1). Nelson
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Figure 1: (a) FOE and FOC lines by pure transla-
tional motion of the camera system. (b) relative posi-
tions of both lines change as the camera system follows
a curvilinear path with a rotation to the left side. (c)
rotational movement to the right side.

and Aloimonos [8] have proposed to use the spherical
projections of a scene to calculate the translational
and rotational components of the motion fields with
a qualitative analysis of flow fields.

Similar features are also present in the flow field of
omnidirectional scenes captured by catadioptric cam-
eras. Translational or curvilinear motion of the robot-
camera system induces global flow fields with singular
points on the translational direction. This fact en-
ables determining the navigation direction, which can
constitute a prediction for an inertial measurement
model. Additionally, the regions with significant high
flow values in the dense motion field can be detected
by a simple pattern analysis. These values are mostly
caused by very near stable or independently moving
objects.

3 Optical Flow

Projected relative motion of one image pixel can be
represented as a vector V(vx, vy)and can be evaluated
from the analysis of the instantaneous changes in the
brightness values at this pixel point (x, y). For the
calculation of the optical flow field, one may assume
that intensity is conserved throughout the image and
the only reason for the brightness changes is the rel-
ative motion. Given a brightness function I(x, y, t)
at a pixel position (x, y) and time t, this brightness
conservation condition (BCC)([5]) can be formulated
as:

I(x, y, t) = I(x + vxt, y + vyt, 0) (1)

where vx und vy define the components of the mo-
tion velocity in x and y directions respectively. As-
suming that the image intensities of the scene points
are preserved, the motion field can be estimated by
using the spatiotemporal differentiation of the image
intensity function I(x, y, t). The classical formulation
of this method given by [5] (shown below), depends
on two assumptions. The first one, conservation of
intensities, has already been discussed above. The

next assumption is the smoothness of the motion in
given scene points, which means that the neighboring
points on the image move with the same velocity. This
last assumption assures the differentiability of the im-
age intensity signal I(x, y, t). Differentiating I(x, y, t)
with respect to t and assuming that this is zero, yields
the following equation:

dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0 (2)

Partial differences of I ( ∂I
∂x and ∂I

∂y ) indicate the mo-
tion components in x, y directions respectively. They
will be represented with vx and vy.

From the above equation it is clear that only the
normal velocity component, that is the image velocity
in the direction of the image gradient, can be solved
from the BCC alone (1). This is also known as the
aperture problem. To solve this problem and calculate
the actual velocity vectors, one needs to consider addi-
tional information about the motion, e.g. smoothness,
occlusion or disocclusion etc. Depending on the as-
sumptions made on the features of the global motion,
many methods for the optical flow calculation have
been proposed. (For a comprehensive review of the
methods see [1]). A popular method that can be found
in many implementations is the method proposed by
Lucas and Kanade [7]. It is based on a Linear Least
Squares Estimate fit of the normal flow vectors to a
constant velocity model v over a small neighborhood
Ω. It requires the minimization of the function:

∑

x∈Ω

ω(x) [∇I(x) · v + It(x)]2 (3)

where ω(x) in Ω are set to give more importance to
the pixels in the center of the window than at its pe-
riphery. ∇ indicate the gradient operator applied on
to I and It represents the temporal derivative of the
intensity function. This method seems to be more ap-
propriate for the applications that have to cope with
object deformations.(For a qualitative comparison of
the different methods see ([10]) ) The robustness of the
method results from the assumption of a local smooth-
ness of the motion in a small area of the image rather
than a global smoothness. It is also inexpensive in
the sense that only five convolutions over the spatial
neighborhood Ω are needed to compute the terms in
(3).

3.1 Determining the FOE and FOC Positions
Smooth changes of the omnidirectional scenes as

provided by the catadioptric sensors, cause harmon-
ical distributions of the optical flow vectors in the
dense flow field. The histogram of these flow field
vectors captured in the angular direction, vary in sig-
nificant patterns as the mobile visual system moves in



translational or curvilinear paths. The analysis of the
singular points of this histogram, which resembles a
sine-like distribution, allows the detection of the direc-
tion of the camera-robot motion. The zero-crossings
of the distribution indicate the FOE and FOC. These
points are shifted proportional to the motion direc-
tion. The angular distance between two crossings
(FOE and FOC) may vary between 180◦, where the
FOE and FOC divide the flow field into two equal
parts and indicate a pure translational motion, and
0◦, where there is no distinguishable FOE and FOC,
indicating purely rotational motion.

Measurement of the rotational motion should be
supported by additional instruments. It can be mea-
sured using an odometry instrument, but this is
mostly imprecise due to wheel-slippage, or errors that
stem from a navigation on uneven floors. There-
fore gyroscopes are widely used to measure rotational
speed and also absolute angles by integrating sensor
readings over time. During the last years the phys-
ical dimensions of the gyroscopes have reduced re-
markably, and even more important, they have be-
come very cheap compared to former Ring Laser Gy-
roscopes (RLG) or Fiber Optical Gyroscopes (FOG).
This was achieved by using cheap vibrating piezo ele-
ments, which are subject to secondary vibration when
rotated and silicon microstructures consisting of a ring
shaped vibrating element that changes its direction of
vibration during rotation. The directional variations
of the original motion can be sensed and the rate of
turn can be evaluated. With these cheap and small
sensors, it is now possible to equip our mobile robot to
improve and to ease the motion analysis with the om-
nidirectional camera. Combination of the two differ-
ent sensor information was realized using a Kalman-
Model which can be outlined as in figure 2. In this
model we combine the two sensory information, gyro-
scope measurement and angular direction estimation,
which is expected to be less precise. Local position
and independent motion measurement are not consid-
ered to be part of the Kalman-Model yet.

3.2 Detection of independently moving scene
objects

Independent motion causes distinct changes on the
global flow pattern of a moving camera-robot system.
While the background motion occupies the larger part
of the global flow field, independent motion arise as
regions of disturbances in this pattern. Static objects
which are located in the near regions of the mobile
robot may also cause greater flow vectors which differ-
entiate in the value but not in the direction of the ego
motion. The analysis of distinct regions of the global
flow field enables the detection of such static and/or
independently moving objects. Both cases might be
interesting from the navigational point of view. If the

Figure 2: Flow diagram of the sensory system that
detects ego- and independent motion on a mobile
robot. θ′: gyroscope measurement, θ′′:angular transla-
tion direction evaluated by optical flow field analysis,
θest is the estimated navigation direction

major goal is to determine the dynamical objects in
the scene, then it might be necessary to look at the
changes of the flow field over time. One efficient way
to do so is to warp the given image applying the pre-
viously estimated flow field. If the general motion of
the robot is of constant velocity, any object moving
with an independent speed and direction will produce
a difference between the warped image and the real
following image. The region where this warp error is
maximal, indicates independent object motion. This
procedure can be outlined as follows:

• calculate the flow field using the first two images

• generate a pseudo image by warping the second
image using the estimated flow field

• calculate the difference between the third image
and the pseudo image and detect the regions of
maximum difference

4 Experiments

The image sequences are acquired by means of
a catadioptric sensor with a specially curved mirror
surface that preserves the linear angular relationship
of incoming rays and their projections on the image
plane (designed as proposed in [3]). It is mounted on
a mobile robot that follows translational and curvi-
linear paths. In the first case, it is expected that the
FOE and FOC vectors have opposite directions, span-
ning an angle of 180◦. As the rotational component
affects the motion field, it is expected that this angle
decreases on one side of the field. Purely rotational
motion causes the FOC and FOE vectors to vanish.

The analysis of the clockwise (CW) and counter-
clockwise (CCW) flow vectors, marked in the images,
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Figure 3: (a) In the scene there is only translational
motion. Red (+) indicate counterclockwise, green (o)
indicate clockwise motion (b) only rotational motion
(c) curvilinear motion.

render the regions with contradirectional flow fields.
The proportions of these fields indicate the positions
of the FOE and FOC. Ideally, this should lead to a
unique detection of both of the lines. In figure 3, we
present the resulting images.

To enable a quantitative and controlled analysis, we
have generated synthetical images distorted with the
given mirror properties simulating the omnidirectional
camera at hand. The camera-robot system navigates
in a virtual corridor with a known direction and speed.
For the sequence from which the image in figure (4)
was taken, the camera moves to the angular direction
of 270◦, beginning from the right horizontal direction
and incremented counterclockwise. (The robot navi-
gates in the direction of the 6:30 position of an analog
clock and the beginning of the angular coordinate is
at the 3:15 position) The angular distribution of the
flow vectors on the omnidirectional field shows a sine-
like pattern (Figure 4(b)). The angular direction of
the minima of this distribution indicates the motion
direction. In the pure translatory case, these minima
are exactly 180◦ apart. Deviation from the pure trans-
latory motion causes the phase of the sine function to
vary. Quantitative analysis of the synthetical image
sequences showed that it is possible to detect the nav-
igation direction of the camera-robot system with up
to a maximal error of 5◦ image.

In the real scenes, more accurate results can be
achieved by combining and evaluating additional iner-
tial information from a gyroscope. The currently used
sensor (ADXR300, Analog Devices Inc.) can measure
up to 300 degrees per second, which is sufficient for
most applications in mobile robotics where vision is
also applicable. Since the integration from rates to
absolute angles is required, even small errors are ac-
cumulated over time and this would lead to large de-
viations if no recalibration takes place. This problem
is bypassed by only integrating over a short period of
time between two pictures. With our current camera
setup, we’re able to process a frame every 4 seconds
which is sufficient to neglect the error.

4.1 Independent Motion

In Fig.5, two real images of an indoor navigation
sequence is shown. Fig.5d, presents the results of
distinct flow region detection. Note that in Fig.5d
the algorithm detects independent object movement
as well as the static near objects. Because the signifi-
cant regions on the global flow pattern are also caused
by depth changes, differentiation between these two
object categories cannot be done until applying the
warping analysis, that was outlined above (see section
3.2). Warping the image introduces a temporal analy-
sis which assumes that the robot ego motion is smooth
and independently moving objects differ significantly
in their motion direction and speed. In Fig.5e, the
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Figure 4: Flow field calculated on synthetical image
sequence with known FOE and FOC positions. The di-
rection of the two singular points span exactly a 180◦

angle. The black line on the image represents the es-
timated navigation direction. The images also include
the artificial scene distortion due to the mirror sur-
face.

detected silhouette of the person on the right, who
is moving independently from the robot-camera sys-
tem, is shown. The detection is quite stable if the
independently moving objects are in the near region
of the camera. Distant objects are reduced in their
size due to the distortions of the catadioptric sensor.
Their motion can be detected using a special analysis
which considers the outermost regions of the omnidi-
rectional images, where distant object movement can
be expected, seperately.

Currently it is only possible to detect the angu-
lar direction of the independent motion. We will be
considering additional measurement techniques to de-
termine the depth measurement of the objects, which
will enable determining the exact position of the ob-
jects in the scene.

5 Summary and Future Work

Visual information provided by omnidirectional
cameras include features of significant importance for
a robot navigating in a dynamical environment. Es-
timation of the ego motion direction and detection of
the objects in the environment can help avoid obsta-
cles or plan the navigation path. Such an estimation
can be done by considering the inherent features of the
global flow fields of omnidirectional image sequences
in combination with standard inertial sensors. This
paper has introduced techniques for gaining naviga-
tional information from visual motion fields of om-
nidirectional image sequences. The global structure
of those motion fields gives hints about the naviga-
tion direction of a robot in translational or curvilinear
motion. The angular position of the singular points of
such a field, where the flow vectors seem to be emerg-
ing and vanishing ( the Focus Of Expansion and the
Focus Of Contraction) indicate the navigation direc-
tion. These points are related to the translational
component of the navigation. Refining this analysis,
specially for the purely rotational case, has required
the use of a gyroscope.

The regions with significant and rapid changes in
the global flow field indicate near obstacles or indepen-
dently moving objects in the omnidirectional scene.
The motion pattern analysis detects such regions. In-
dependently moving objects with different velocity
and/or motion direction can be detected by following
the changes in the motion field in time, since omni-
directional scenes allow these objects to track for a
longer time and in a larger field of view.

Future Work. Our future work aims to refine the
analysis for detecting independent motion patterns.
Depth estimation and distant object detection are two
of the topics that will be considered. We are also con-
cerned with the refinement of the navigation modeling



of an autonomous mobile robot using visual motion
patterns and additional sensory input.
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Figure 5: (a) First image of a sequence taken from a camera moving through a corridor (b) Second image of
the sequence, note that the person on the right moves independently to the left (c) Flow field superposed onto the
second image, the line on the left indicates the estimated translation direction (d) Flow regions with significant
changes with respect to their background (e) Region with the maximum warping error (f) Distribution of the flow
vectors in angular resolution and the (sine) fitting function


